If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1000^-4x=(1/10)^2x
We move all terms to the left:
1000^-4x-((1/10)^2x)=0
Domain of the equation: 10)^2x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-4x-((+1/10)^2x)+1000^=0
We add all the numbers together, and all the variables
-4x-((+1/10)^2x)=0
We multiply all the terms by the denominator
-4x*10)^2x)-((+1=0
Wy multiply elements
-40x^2+1=0
a = -40; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-40)·1
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-40}=\frac{0-4\sqrt{10}}{-80} =-\frac{4\sqrt{10}}{-80} =-\frac{\sqrt{10}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-40}=\frac{0+4\sqrt{10}}{-80} =\frac{4\sqrt{10}}{-80} =\frac{\sqrt{10}}{-20} $
| 50x+27=59x | | 4z/10+4=-7 | | 4/5x=8/25 | | 5/6m=-20 | | k/9+2=13 | | 6.6=n+5.75 | | 10x+4=8x+2 | | 5z+13=-2 | | -42=-3x+32+5x | | 5d-24=79 | | 15y+4=9y= | | 6d+9=39 | | 3(3x+10)=50−x | | 1+4x=8x-23 | | 6x²+3x=0 | | 10(0.4=0.5g)=4g | | (-3d^2+d-3)-(-5+3d)=0 | | 5y+6y=0 | | 11x+12=8x=20 | | 6x^2+168=0 | | -4x+31-6x+27=-18 | | x2−6x+26=0 | | 9x=x+80 | | 9u-2=2 | | 2-x/4=11 | | 0.315x=x+1 | | X+3(x+11)=1 | | 5-4(3x+2)=4-(3x-1) | | a-3/4=81/5 | | z/7+7=6 | | 2X-7/8+x=2x+7/2+2 | | 4960z+50−97z=−37z+49 |